Volta 180 Series Probe Head Wafer Level Testing

Smiths Interconnect's Volta 180 Series Probe Head addresses the need for reduced test time and increased throughput in high reliability testing of Wafer Level Packages (WLP), Wafer Level Chip Scale Packages (WLCSP) and Known Good Die (KGD).

The Volta 180 Series is capable of testing sorted die for engineering development or failure analysis. Volta 180 Series offers a high performance, cost-effective, easily maintainable alternative to cantilever and vertical probe card technologies.

Smiths Interconnect's high performance spring probe contacts are used in the Volta Series. Spring probes are individually replaceable in the field with minimal tooling and technical expertise.

The state-of-the-art Volta Manual Actuator (Lid) design allows sorted die tests, at all sites, simultaneously. The unique lid design eliminates the possibility of die cracking even after repetitive testing. This feature enables probe card bring-ups prior to even wafer availability.

Smiths Interconnect's capabilities cover design validation, RF measurements and custom simulations, including Probe Card Analyzer (PCA) test capability in Outgoing Quality Assurance. The Volta Series Probe Head ensures improved efficiency in high reliability WLP, WLCSP and KGD testing.

Features

- Proprietary engineered plastic and machined ceramic for improved planarity allowing increased site to site test parallelism
- Customized footprint with component clearance close to Device Under Test (DUT)
- Probe Head to PCB alignment by guide pins with optional fiducials
- Lid design options including individual spring loaded device plunger and floating device guide
- Easy maintenance and quick installation
- Field repairable
- Compatible to industry standard interval cleaning

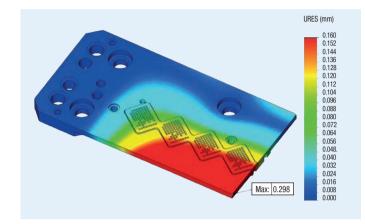
Benefits

- Long product life
- Increased test throughput
- Higher signal integrity performance
- Reduced test set-up time
- Lower cost of ownership

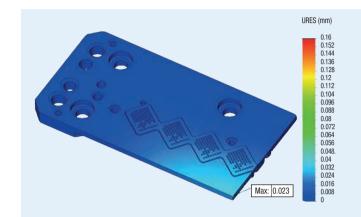
Value Proposition

World-class Technology	Non-plated noble material spring probe contact				
	Optimized contact force for low and stable contact resistance				
	Higher compliance compared to traditional vertical, cobra or pyramid contact technologies				
	Sorted die test capability for test development				
	Probe Card Analyzer (PCA) validation capability				
	Suited for tri-temp test				
	Replacement for cantilever and vertical probe card technologies				
	Available for 180, 200, 250, 300, 350, 400 (or above) µm pitch applications				
	applications				
	Matal frame with removable cartridee				
Superior Durability	Metal frame with removable cartridge				
	Proprietary engineered plastic material for high rigidity				
	Easy maintenance and field repairable				
	100% in-house manufacturing				
Optimized Design	Improved structure based on finite element and Monte Carlo analyses				
	Machinable ceramic material option for increased planarity				
	Excellent site to site coplanarity				
	High test parallelism (over 32 sites)				
	4-point crown (less bump damage)				
	High Current Carrying Capacity (CCC)				
Exceptional Performance*	Excellent DC and RF performance				
	Low and stable contact resistance				
	Reduced signal path				
	Long product life				

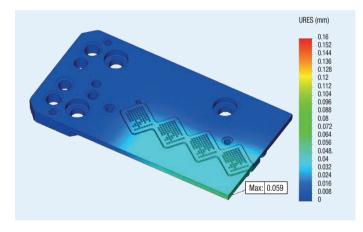
* Refer to the Volta Series Probe Specifications


Volta 180/200 Fan-out PCB

- 1 Fan-out routing approximately 600 pins from 180/200µm to ≥0.8mm per site; up to 10 sites
- 2 Identical routing for each site in parallel configuration
- 3 Up to 6 layers of Signal I/Os using laser stacked micro via
- 4 Up to 10 layers of Ground and Power I/Os; 18 layers maximum
- 5 Typical board size is 127x51 mm (1.5 mm thickness)
- 6 Fiducial Pads for accurate Probe Head true position
- 7 Optimized low loss material for high speed performance



Structural Simulation


Probe Head Preload Deflection FEA Analysis

Ceramic PEEK Frame & Body

SST Frame & Proprietary Material "PEEK Rigid" Body

SST Frame & Material "PI-1" Body

Max Deflection Due to Preload

	Ceramic PEEK Frame & Body	Stainless Steel Frame & Proprietary Material "PEEK Rigid" Body	Stainless Steel Frame & Material "PI-1" Body
Max Deflection	0.298 mm	0.023 mm	0.059 mm

Volta Series Probe Specifications

Volta Series Specifications		Volta 180	Volta 200	Volta 250	Volta 300	Volta 350	Volta 400		
		**851-0023049-H00	**851-0012074-H01	**851-0023038-H00	*102121-H00	*102119-H00	**102120-H00		
Wafer I/O Pitch		180 µm	200 µm	250 µm	300 µm	350 µm	400 µm		
Minimum Probe Depth (At Test)		2.85 mm	2.85 mm	2.90 mm	3.80 mm	3.50 mm	2.90 mm		
Probe Travel	Wafer Side	230 µm	230 µm	250 µm	250 µm	300 µm	300 µm		
	PCB Side	160 µm	160 µm	150 µm	150 µm	150 µm	150 µm		
Spring Material		music wire	music wire	music wire	stainless steel	stainless steel	stainless steel		
Device Side Contact Material		Homogenous							
Probe Tip Shape		4-Point Crown							
Spring Force		6.5 gf	10 gf	15 gf	17.5 gf	16 gf	17 gf		
Contact Resistance		< 200 mΩ	< 250 mΩ	< 100 mΩ	< 100 mΩ	< 70 mΩ	< 50 mΩ		
Continuous Current Carrying Capacity (Room Temp.)		0.84 A	1.2 A	1.5 A	2 A	2.50A	ЗA		
Insertion Loss (Pattern: R-S-R @ -1 dB)		20 GHz	22 GHz	30 GHz	20 GHz	20 GHz	20 GHz		
Loop Inductance		0.65 nH	0.56 nH	0.76 nH	0.95 nH	0.92 nH	0.82 nH		
Capacitance		0.40 pF	0.22 pF	0.31 pF	0.39 pF	0.41 ρF	0.30 pF		
Working Temperature		-55° to 120°C	-55° to 120°C	-55° to 120°C	-55° to 150°C	-55° to 150°C	-55° to 150°C		
Max. Number of	Test Sites	Defined by the FEA [Total pin count at a defined area is the limit]					t]		
Sorted Die Test Feature (Alignment Plate and Manual Actuator)		Yes	Yes	Yes	Yes	Yes	Yes		
Individual Contact Replacement		Yes	Yes	Yes	Yes	Yes	Yes		

Notes:

** Suitable for engineering plastic only

^{*} Suitable for engineering plastic and machined ceramic

Global Support

Americas

- Kansas City, KS
 +1 913 342 5544
 info.us@smithsinterconnect.com
- Tampa, FL
 +1 813 901 7200
 info.tampa@smithsinterconnectinc.com
- Milpitas, CA
 +1 408 957 9607 x 1125
 info.us@smithsinterconnect.com
- Kirkland, QC, Canada
 +1 514 842 5179
 info.us@smithsinterconnect.com
- Salisbury, MD
 +1 800 780 2169
 info.us@smithsinterconnect.com

Europe

- Deggendorf, Germany
 +49 991 250 120
 info.de@smithsinterconnect.com
- Rouen, France
 +33 2 32 96 91 76
 info.fr@smithsinterconnect.com
- Dundee, UK
 +44 1382 427 200
 info.dundee@smithsinterconnect.com
- Genova, Italy
 +39 0 10 60361
 info.it@smithsinterconnect.com

Asia

- Bangalore, India
 +91 080 4241 0529
 info.in@smithsinterconnect.com
- Singapore
 +65 6846 1655
 info.asia@smithsinterconnect.com
- Mianyang, China
 +86 816 231 5566
 HSICSR@hf-smiths.com
- Suzhou, China
 +86 512 6273 1188
 info.asia@smithsinterconnect.com
- Shanghai, China
 +86 21 2283 8008
 info.asia@smithsinterconnect.com

Copyright© 2020 Smiths Interconnect | All rights reserved | Version 1.0

The information contained within this document is subject at all times to applicable Export Control regulations and legal requirements

