

Lab-Flex® T Series

Phase Tested Coaxial Cable Assemblies

Lab-Flex® T Series

Phase Tested Coaxial Cable Assemblies

Smiths Interconnect's Lab-Flex® T Series of coaxial cable assemblies provides consistent electrical performance over higher frequencies and larger temperature extremes.

Customers benefit from improved system performance, particularly for applications requiring critical signal timing.

The Lab-Flex T® Series is a unique design specifically tailored to minimize phase change when subjected to a wide range of temperatures. It also has a very stable nature around room temperature. As such, Radar, Test & Measurement applications are ideal for this product line.

All products have gone through extensive qualification testing in order to validate today's rigorous application requirements per customer and industry. The T series assemblies are made with a special Foam Fluoropolymer insulation to minimize phase deviation over a wide temperature range while all but eliminating the "Knee" at room temperature. The attenuation characteristics are similar to low loss PTFE due to the foam insulator design. The 065T, 100T, and 160T products represent the most common sizes needed for today's applications. Test reports are available on request.

Specifically designed for Radar and Test applications requiring precise phase stability over temperature.

Features and Benefits

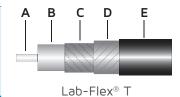
- Up to 50 GHz
- Phase vs. Temp testing available on request including "tracking" cable pairs
- Temperature stable foam dielectric for minimum phase change
- Phased Matched Pairs and Sets available (standard tolerance is +/- one degree per GHz or +/-2.8 picoseconds)

Applications

- Radar, Tx, Rx, links of same electrical length over temperature
- Commercial and Military markets
- Test & Measurement
- Space, GEO/MEO/LEO and Small Satellites

Technical Characteristics

Lab-Flex® T Series	065T	100T	160T			
Electrical						
Frequency, Max (GHz)	50	50	40			
Impedance, nominal (Ω)	50	50	50			
Velocity of Propagation (%)	79	80	80			
Shielding Effectiveness, 18 GHz (dB/ft)	>100	>100	>100			
Capacitance (pF/ft)	26	25.4	23.3			
Delay (ns/ft), (ns/meter)	1.29, 4.24	1.27, 4.17	1.27, 4.17			
Attenuation k1 (db/100ft) @ 23 deg C	0.934	0.534	0.341			
Attenuation k2 (db/100ft) @ 23 deg C	0.000602	0.000803	0.000891			

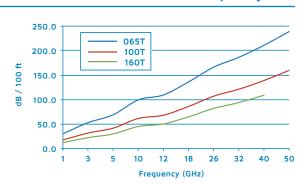

Attenuation (Typical) at any Frequency = $k1 \times SqRt$ (FMHz) + $k2 \times (FMHz)$

Mechanical & Environmental

Weight (lbs/100ft), (Kg/100m)	0.412, 0.614	1.10, 1.64	2.47, 3.68
Temperature Range (°C)	-65 to +165	-65 to +165	-65 to +165
Minimum Bend Radius (inch), (mm)	0.250, 6.35	0.350, 8.90	0.500, 12.70

Construction

Inner Conductor A		Solid SPC	Solid SPC	Solid SPC
Dielectric B	3	Foam Fluoropolymer	Foam Fluoropolymer	Foam Fluoropolymer
First Outer Shield C		SPC Spiral	SPC Spiral	SPC Spiral
Second Outer Shield D)	SPC Round	SPC Round	SPC Round
Jacket (inch O.D.)		0.065, FEP	0.100, FEP	0.160, FEP

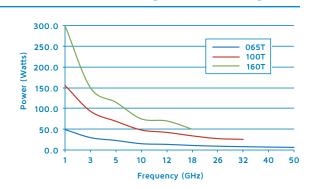


Attenuation	(dB)	/100ft
-------------	------	--------

		• •	
GHz	065T	100T	160T
1	30.1	17.7	12.3
3	52.9	31.7	22.4
5	69.0	41.8	30.0
10	99.4	61.5	45.2
12	109.5	68.1	50.4
18	136.1	86.1	64.9
26	166.2	107.0	82.1
32	186.3	121.2	94.0
40	210.9	139.0	109.0
50	238.9	159.7	

Typical Cable Loss at +25 $^{\circ}$ C & Sea Level

Attenuation vs Frequency

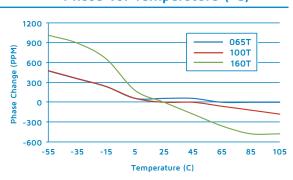


Average Power Rating (Watts)

GHz	065T	100T	160T
1	49.3	155.7	300
3	29.9	93.5	150
5	23.0	69.3	115
10	15.2	48.2	75
12	13.6	42.5	70
18	11.0	34.1	50
26	9.2	27.5	
32	8.1	25.6	
40	7.1	21.9	
50	6.3	19.3	

Power Rating at +25° C & Sea Level

Average Power Rating

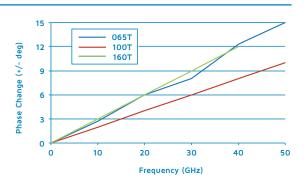


Technical Characteristics

Phase vs. Temperature (PPM)

Phase vs. Temperature (°C)

Temperature (°C)	065T	100T	160T
-55	474	478	1014
-35	355	359	895
-15	237	239	656
5	59	60	179
25	59	0	0
45	59	0	-179
65	0	-60	-358
85	0	-119	-477
105	0	-179	-477



Typical Values

Phase vs. Flexure

Phase vs. Flexure

1 11000 101 1 104010							
Frequency (GHz)	065T (+/-deg)	100T (+/-deg)	160T (+/-deg)				
0 10 20 30 40 50	0 2.7 6 8 12.3 15	0 2 4 6 8 10	0 3 6 9 12				

Typical Values +25° C

Cable Code	Connector Code	Series	Gender	Туре	C-Nut Style ¹	Body Material ²	Body Finish ³	Loss per GHz	Frequency Max GHz
065T, 100T, 160T	SMS	SMA	Male	Straight	Н	SS	Р	0.01	18
065T, 100T, 160T	KMS	2.92mm	Male	Straight	Н	SS	Р	0.01	40
065T, 100T	MMS	2.4mm	Male	Straight	Н	SS	Р	0.01	50
065T, 100T	SMPFS	SMP	Female	Straight	N/A	Be	G	0.02	40
065T, 100T	SMPFR	SMP	Female	Right Angle	N/A	Be	G	0.02	40
065T, 100T	SMPMFS	SMPM	Female	Straight	N/A	Ве	G	0.02	50

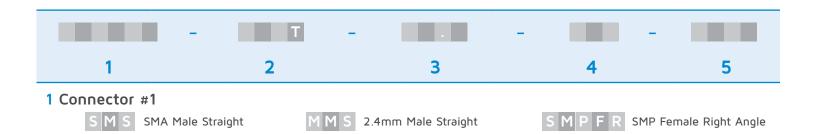
- ¹ C-Nut Style: H=Hex, K-Knurled, HK=Hex Nut & Knurled
- ² Body Materials: B=Brass, SS=Stainless, Be=Beryllium Copper
- ³ Body Finish: N=Nickel, S=Silver, G=Gold, P=Passivated

Sex of connector is determined by center conductor

Cable Code	Option Code	Option Description	Option Details
065T, 100T, 160T	+/-2.8 ps ⁴	Phase Match	Standard Tolerance of +/-2.8ps
065T, 100T, 160T	RoHS⁵	RoHS Compliant	Per EU Directive 2002/95/EC

 4 for phase matched assemblies (+/-2.8ps) is required to be added to the end of standard part number example: SMS-160T-24.0-SMS +/-2.8ps

⁵for RoHS assemblies (RoHS) is required to be added to the end of standard part number example: SMS-160T-24.0-SMS-RoHS


Custom Options:

The above connectors and options represent the most common types used. Smiths Interconnect offers a wide range of cables, connectors and options. If you do not see an option you require please consult the sales department.

S M P M F S SMPM Female Straight

How To Order

S M P F S SMP Female Straight

2 Cable (fixed)

- 3 Length (inches)
 - 3 6 . 0 Example: 36 in.

K M S 2.92mm Male Straight

4 Connector #2

5 Assembly Option

Global Support

UK Headquarters

London, UK +44 20 7004 1600 info.uk@smithsinterconnect.com

US Headquarters

■ Stuart, FL +1 772 286 9300 info.us@smithsinterconnect.com

Americas

- Costa Mesa, CA +1 714 371 1100 info.us@smithsinterconnect.com
- Milpitas, CA +1 408 957 9607 x-1125 info.us@smithsinterconnect.com
- Stuart, FL +1 772 286 9300 info.us@smithsinterconnect.com
- Hudson, MA +1 978 568 0451 info.us@smithsinterconnect.com
- Northampton, MA +1 413 582 9620 info.northampton@smithsinterconnectinc.com
- Tampa, FL + 1 813 901 7200 info.tampa@smithsinterconnectinc.com
- Kansas City, KS +1 913 342 5544 info.us@smithsinterconnect.com
- Salisbury, MD +1 800 780 2169 info.us@smithsinterconnect.com
- Thousand Oaks, CA +1 805 267 0100 info.thousandoaks@smithsinterconnectinc.com

Europe

- Deggendorf, Germany +49 991 250 120 info.de@smithsinterconnect.com
- Genova, Italy +39 0 10 60361 info.it@smithsinterconnect.com
- Dundee, UK +44 1382 427 200 info.dundee@smithsinterconnect.com
- Rouen, France +33 2 32 96 91 76 info.fr@smithsinterconnect.com
- Elstree, UK +44 20 8236 2400 info.uk@smithsinterconnect.com

Asia

- Shanghai, China +86 21 3318 4650 info.asia@smithsinterconnect.com
- Suzhou, China +86 512 6273 1188 info.asia@smithsinterconnect.com
- Singapore +65 6846 1655 info.asia@smithsinterconnect.com

